
www.almakohima.co.in

C# Programming

What is C#

C# is a general-purpose, modern and object-oriented programming language pronounced as “C Sharp”.
It was developed by Microsoft led by Anders Hejlsberg and his team within the .NET initiative and was
approved by the European Computer Manufacturers Association (ECMA) and International Standards
Organization (ISO). C# is among the languages for Common Language Infrastructure. C# is a lot similar
to Java syntactically and is easy for users who have knowledge of C, C++ or Java.

C# | Identifiers
In programming languages, identifiers are used for identification purposes. Or in other
words, identifiers are the user-defined name of the program components. In C#, an
identifier can be a class name, method name, variable name, or label.

Example:

public class GFG {

 static public void Main ()

 {

 int x;

 }

}

Here the total number of identifiers present in the above example is 3 and the names
of these identifiers are:

 GFG: Name of the class
 Main: Method name
 x: Variable name
Rules for defining identifiers in C#:
There are certain valid rules for defining a valid C# identifier. These rules should be
followed, otherwise, we will get a compile-time error.

 The only allowed characters for identifiers are all alphanumeric characters([A-

Z], [a-z], [0-9]), ‘_‘ (underscore). For example “geek@” is not a valid C#
identifier as it contain ‘@’ – special character.

 Identifiers should not start with digits([0-9]). For example “123geeks” is not valid
in the C# identifier.

www.almakohima.co.in

 Identifiers should not contain white spaces.

 Identifiers are not allowed to use as keywords unless they include @ as a prefix.
For example, @as is a valid identifier, but “as” is not because it is a keyword.

 C# identifiers allow Unicode Characters.
 C# identifiers are case-sensitive.
 C# identifiers cannot contain more than 512 characters.
 Identifiers do not contain two consecutive underscores in their name because such

types of identifiers are used for the implementation.

C# | Keywords
Keywords or Reserved words are the words in a language that are used for some
internal process or represent some predefined actions. These words are therefore not
allowed to use as variable names or objects. Doing this will result in a compile-time
error.
Example:

// C# Program to illustrate the keywords

using System;

class GFG {

 // Here static, public, void

 // are keywords

 static public void Main () {

 // here int is keyword

 // a is identifier

www.almakohima.co.in

 int a = 10;

 Console.WriteLine("The value of a is: {0}",a);

 // this is not a valid identifier

 // removing comment will give compile time error

 // double int = 10;

 }

}

Output:
The value of a is: 10

www.almakohima.co.in

There are total 78 keywords in C# as follows:

abstract do in protected throw
as double int public true
base else interface readonly try
bool enum internal ref typeof
break event is return unit
byte explicit lock sbyte ulong
case extern long sealed unchecked
catch false namespace short unsafe
char finally new sizeof ushort
checked fixed null stackalloc using
class float object static using static
const for operator string virtual
continue foreach out struct void
decimal goto override switch volatile
default if params this while
delegate implicit private

Keywords in C# is mainly divided into 10 categories as follows:

1. Value Type Keywords: There are 15 keywords in value types which are used to

define various data types.

bool byte char decimal

double enum float int

long sbyte short struct

unit ulong ushort

www.almakohima.co.in

Example:

// C# Program to illustrate the

// value type keywords

using System;

class GFG {

 // Here static, public, void

 // are keywords

 static public void Main () {

 // here byte is keyword

 // a is identifier

 byte a = 47;

 Console.WriteLine("The value of a is: {0}",a);

 // here bool is keyword

 // b is identifier

 // true is a keyword

www.almakohima.co.in

 bool b = true;

 Console.WriteLine("The value of b is: {0}",b);

 }

}

Output:
The value of a is: 47

The value of b is: True

2. Reference Type Keywords: There are 6 keywords in reference types which are
used to store references of the data or objects. The keywords in this category
are: class, delegate, interface, object, string, void.

3. Modifiers Keywords: There are 17 keywords in modifiers which are used to
modify the declarations of type member.

public private internal protected abstract

const event extern new override

partial readonly sealed static unsafe

virtual volatile

www.almakohima.co.in

Example:

// C# Program to illustrate the

// modifiers keywords

using System;

class Geeks {

 class Mod

 {

 // using public modifier

 // keyword

 public int n1;

 }

 // Main Method

 static void Main(string[] args) {

 Mod obj1 = new Mod();

www.almakohima.co.in

 // access to public members

 obj1.n1 = 77;

 Console.WriteLine("Value of n1: {0}", obj1.n1);

 }

 }

Output:
Value of n1: 77

4. Statements Keywords: There are total 18 keywords which are used in program
instructions.

if else switch do for

foreach in while break continue

goto return throw try catch

finally checked unchecked

www.almakohima.co.in

Example:

// C# program to illustrate the statement keywords

using System;

class demoContinue

{

 public static void Main()

 {

 // using for as statement keyword

 // GeeksforGeeks is printed only 2 times

 // because of continue statement

 for(int i = 1; i < 3; i++)

 {

 // here if and continue are keywords

 if(i == 2)

 continue;

 Console.WriteLine("GeeksforGeeks");

www.almakohima.co.in

 }

 }

}

Output:
GeeksforGeeks

5. Method Parameters Keywords: There are total 4 keywords which are used to
change the behavior of the parameters that passed to a method. The keyword
includes in this category are: params, in, ref, out.

6. Namespace Keywords: There are total 3 keywords in this category which are
used in namespaces. The keywords are: namespace, using, extern.

7. Operator Keywords: There are total 8 keywords which are used for different
purposes like creating objects, getting a size of object etc. The keywords are: as, is,
new, sizeof, typeof, true, false, stackalloc.

8. Conversion Keywords: There are 3 keywords which are used in type conversions.
The keywords are: explicit, implicit, operator.

9. Access Keywords: There are 2 keywords which are used in accessing and
referencing the class or instance of the class. The keywords are base, this.

10. Literal Keywords: There are 2 keywords which are used as literal or constant.
The keywords are null, default.

Important Points:
 Keywords are not used as an identifier or name of a class, variable, etc.
 If you want to use a keyword as an identifier then you must use @ as a prefix. For

example, @abstract is valid identifier but not abstract because it is a keyword.
Example:
int a = 10; // Here int is a valid keyword

double int = 10.67; // invalid because int is a keyword

double @int = 10.67; // valid identifier, prefixed with @

int @null = 0; // valid

www.almakohima.co.in

// C# Program to illustrate the use of

// prefixing @ in keywords

using System;

class GFG {

 // Here static, public, void

 // are keywords

 static public void Main () {

 // here int is keyword

 // a is identifier

 int a = 10;

 Console.WriteLine("The value of a is: {0}",a);

 // prefix @ in keyword int which

 // makes it a valid identifier

 int @int = 11;

 Console.WriteLine("The value of a is: {0}",@int);

www.almakohima.co.in

 }

}

Output:
The value of a is: 10

The value of a is: 11

Contextual Keywords
These are used to give a specific meaning in the program. Whenever a new keyword
comes in C#, it is added to the contextual keywords, not in the keyword category. This
helps to avoid the crashing of programs which are written in earlier versions.

Important Points:
 These are not reserved words.
 It can be used as identifiers outside the context that’s why it named contextual

keywords.
 These can have different meanings in two or more contexts.
 There are total 30 contextual keywords in C#.
add equals nameof value
alias from on var
ascending get orderby when
async global partial(type) where
await group partial(method) where
by into remove yield
descending join select
dynamic let set

 Example:

// C# program to illustrate contextual keywords

using System;

www.almakohima.co.in

public class Student {

 // Declare name field

 private string name = "GeeksforGeeks";

 // Declare name property

 public string Name

 {

 // get is contextual keyword

 get

 {

 return name;

 }

 // set is a contextual

 // keyword

 set

 {

www.almakohima.co.in

 name = value;

 }

 }

}

class TestStudent {

 // Main Method

 public static void Main(string[] args)

 {

 Student s = new Student();

 // calls set accessor of the property Name,

 // and pass "GFG" as value of the

 // standard field 'value'.

 s.Name = "GFG";

 // displays GFG, Calls the get accessor

 // of the property Name.

 Console.WriteLine("Name: " + s.Name);

www.almakohima.co.in

 // using get and set as identifier

 int get = 50;

 int set = 70;

 Console.WriteLine("Value of get is: {0}",get);

 Console.WriteLine("Value of set is: {0}",set);

 }

}

Output:
Name: GFG

Value of get is: 50

Value of set is: 70

